Reactive polymer enables efficient in vivo bioorthogonal chemistry.
نویسندگان
چکیده
There has been intense interest in the development of selective bioorthogonal reactions or "click" chemistry that can proceed in live animals. Until now however, most reactions still require vast surpluses of reactants because of steep temporal and spatial concentration gradients. Using computational modeling and design of pharmacokinetically optimized reactants, we have developed a predictable method for efficient in vivo click reactions. Specifically, we show that polymer modified tetrazines (PMT) are a key enabler for in vivo bioorthogonal chemistry based on the very fast and catalyst-free [4 + 2] tetrazine/trans-cyclooctene cycloaddition. Using fluorescent PMT for cellular resolution and (18)F labeled PMT for whole animal imaging, we show that cancer cell epitopes can be easily reacted in vivo. This generic strategy should help guide the design of future chemistries and find widespread use for different in vivo bioorthogonal applications, particularly in the biomedical sciences.
منابع مشابه
On-chip bioorthogonal chemistry enables immobilization of in situ modified nanoparticles and small molecules for label-free monitoring of protein binding and reaction kinetics.
Efficient methods to immobilize small molecules under continuous-flow microfluidic conditions would greatly improve label-free molecular interaction studies using biosensor technology. At present, small-molecule immobilization chemistries require special conditions and in many cases must be performed outside the detector and microfluidic system where real-time monitoring is not possible. Here, ...
متن کاملEfficient Palladium-Triggered Release of Vorinostat from a Bioorthogonal Precursor.
Bioorthogonal uncaging strategies have recently emerged as an experimental therapeutic approach to control drug release. Herein we report a novel masking strategy that enables to modulate the metal chelating properties of hydroxamic acid groups by bioorthogonal chemistry using Pd-functionalized resins. This novel approach allowed to devise an inactive precursor of the histone deacetylase inhibi...
متن کامل15N4-1,2,4,5-tetrazines as potential molecular tags: Integrating bioorthogonal chemistry with hyperpolarization and unearthing para-N2
Hyperpolarized magnetic resonance (HP-MR) is a powerful, sensitive, and noninvasive approach to visualize molecular structure, function, and dynamics in vitro and in vivo. Current applications of HP-MR mostly rely on hyperpolarization of target compounds in dedicated hyperpolarizers because biomolecules can typically not be hyperpolarized directly in vivo. The injected hyperpolarized probes oft...
متن کاملAll-in-One azides: empowered click reaction for in vivo labeling and imaging of biomolecules.
We designed and synthesized All-in-One (AIO) reactive azide reagents for bioorthogonal reactions with highly efficient Cu(I) ligand moieties, an azido group, and functional tags for imaging or purification. The AIO reagents displayed fast and efficient click ligation and can be applied in a wide range of in vivo systems.
متن کاملComputationally guided discovery of a reactive, hydrophilic trans-5-oxocene dienophile for bioorthogonal labeling† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ob01707c
The use of organic chemistry principles and prediction techniques has enabled the development of new bioorthogonal reactions. As this "toolbox" expands to include new reaction manifolds and orthogonal reaction pairings, the continued development of existing reactions remains an important objective. This is particularly important in cellular imaging, where non-specific background fluorescence ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 13 شماره
صفحات -
تاریخ انتشار 2012